Inverse of Trigonometric functions:

1. The arcsine of x (sin⁻¹x) is the angle in $[-\pi/2, \pi/2]$ whose sine is x.

The function $y=\sin x$ is one-to-one, if we restrict its domain to the interval

 $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. It has an inverse which is denoted by:

$$y = \sin^{-1} x$$

and is sometimes written as $y=\arcsin x$

and for the function $y=\sin^{-1}x$

Note: The graph of $\sin^{-1}x$ is symmetric about the origin because that the graph of $\sin x$ is symmetric about the origin this means that

$$\sin^{-1}(-x) = -\sin^{-1}x$$

2. The arccosine of $x (\cos^{-1}x)$ is the angle in $[0, \pi]$ whose cosine is x.

The function $y=\cos x$ is one-to-one, if we restrict its domain to the interval $0 \le x \le \pi$. It has an inverse which is denoted by:

$$y = \cos^{-1} x$$

and is sometimes written as $y=\arccos x$

and for the function $y = \cos^{-1}x$

 $D_f = [-1,1]$ and $R_f = [0,\pi]$

Note: The graph of $y = \cos^{-1}x$ has no such symmetry

1. $\cos^{-1} x + \cos^{-1}(-x) = \pi$

$$\therefore \cos^{-1}(-x) = \pi - \cos^{-1} x$$

and form the triangle

2.
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
 for

x > 0

3. The arctangent of x (tan⁻¹x) is the angle in $(-\pi/2, \pi/2)$ whose tangent is x.

The function $y=\tan x$ is one-to-one, if we restrict its domain to the interval

 $-\frac{\pi}{2} < x < \frac{\pi}{2}$. It has an inverse which is denoted by: $y = \tan^{-1} x$

and is sometimes written as
$$y=\arctan x$$

and for the function $y=\tan^{-1}x$

$$D_f = (-\infty, \infty)$$
 and $R_f = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

<u>syllabus</u>

Note: The graph of $\tan^{-1}x$ is symmetric about the origin because that the graph of $\tan x$ is symmetric about the origin, this means that

4. The arctcoangent of x (cot⁻¹x) is the angle in $(0, \pi)$ whose cotangent is x.

The function $y=\cot x$ is one-to-one, if we restrict its domain to the interval $0 < x < \pi$. It has an inverse which is denoted by:

$$y = \cot^{-1} x$$

and is sometimes written as $y=\operatorname{arc} \cot x$

and for the function $y = \cot^{-1}x$

5. The function *y*=sec *x* is one-to-one, if we restrict its domain to the interval $\{x: 0 \le x \le \pi\} \setminus \{\frac{\pi}{2}\}$. It has an inverse which is denoted by:

$$y = \sec^{-1} x$$

and is sometimes written as $y = \operatorname{arcsec} x$ and for the function $y = \operatorname{sec}^{-1} x$

 $D_f = R \setminus (-1,1)$ and $R_f = [0,\pi] \setminus \{\frac{\pi}{2}\}.$

6. The function $y = \csc x$ is one-to-one, if we restrict its domain to the interval $\{x : -\frac{\pi}{2} \le x \le \frac{\pi}{2}\} \setminus \{0\}$. It has an inverse which is denoted by:

$$y = \csc^{-1} x$$

and is sometimes written as *y*=arccscx

and for the function $y = \csc^{-1}x$

 $D_f = R \setminus (-1,1)$ and $R_f = [-\frac{\pi}{2}, \frac{\pi}{2}] \setminus \{0\}.$

Note: To find sec⁻¹x, csc⁻¹x and cot⁻¹x, use the following identities:

1.	$\sec^{-1} x = \cos^{-1} \left(\frac{1}{x}\right)$
2.	$\csc^{-1} x = \sin^{-1} \left(\frac{1}{x}\right)$

3.
$$\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x$$

Example 1: Show that $\sec^{-1} x = \cos^{-1}\left(\frac{1}{x}\right)$.

Sol.: Let
$$z = \text{right side} = \cos^{-1}\left(\frac{1}{x}\right) \implies \cos z = \cos\left(\cos^{-1}\frac{1}{x}\right) \implies \cos z = \frac{1}{x}$$

$$\implies x = \frac{1}{\cos z} = \sec z$$

 $\sec^{-1} x = \sec^{-1}(\sec z) \implies \sec^{-1} x = z = \text{left side} \quad \text{o.k.}$

Example 2: Show that: $\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x$.

Sol.: Let $z = \operatorname{right} \operatorname{side} = \frac{\pi}{2} - \tan^{-1} x \implies \tan^{-1} x = \frac{\pi}{2} - z$ $\Rightarrow \tan(\tan^{-1} x) = \tan\left(\frac{\pi}{2} - z\right) \implies x = \frac{\sin\left(\frac{\pi}{2} - z\right)}{\cos\left(\frac{\pi}{2} - z\right)} = \frac{\cos z}{\sin z} = \cot z$

$$\therefore z = \cot^{-1} x = \text{left side } \text{ o.k.}$$

<u>syllabus</u>

Examples: Find the limits of the following:

- 1. $\lim_{x \to 1^{-}} \sin^{-1} x = \sin^{-1} 1^{-} = \frac{\pi}{2}$
- 2. $\lim_{x \to -1^+} \cos^{-1} x = \cos^{-1}(-1^+) = \pi$
- 3. $\lim_{x \to \infty} \tan^{-1} x = \tan^{-1} \infty = \frac{\pi}{2}$
- 4. $\lim_{x \to -\infty} \tan^{-1} x = \tan^{-1}(-\infty) = -\frac{\pi}{2}$
- 5. $\lim_{x \to \infty} \sec^{-1} x = \lim_{x \to \infty} \cos^{-1}(\frac{1}{x}) = \cos^{-1} 0 = \frac{\pi}{2}$
- 6. $\lim_{x \to -\infty} \sec^{-1} x = \lim_{x \to -\infty} \cos^{-1}(\frac{1}{x}) = \cos^{-1} 0 = \frac{\pi}{2}$
- 7. $\lim_{x \to \infty} \csc^{-1} x = \lim_{x \to \infty} \sin^{-1}(\frac{1}{x}) = \sin^{-1} 0 = 0$

8.
$$\lim_{x \to \infty} \csc^{-1} x = \lim_{x \to \infty} \sin^{-1}(\frac{1}{x}) = \sin^{-1} 0 = 0$$

The Derivative of Inverse Trigonometric Functions:

<u>Example 1</u>: If $y=\sin^{-1}x$, then find dy/dx.

Sol.:
$$y=\sin^{-1}x \implies x=\sin y$$

 $1=\cos y.\frac{dy}{dx}$ (using implicit differentiation)
 $\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}$ (remember that $\cos y > 0$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$)
 $\therefore \frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$

Example 2: If $y = \sec^{-1}x$, then find dy/dx.

Sol.: $y = \sec^{-1}x \implies x = \sec y$

$$1 = \sec y \tan y \cdot \frac{dy}{dx} \qquad \text{(using implicit differentiation)}$$
$$\frac{dy}{dx} = \frac{1}{\sec y \tan y} = \frac{1}{\sec y \left(\mp \sqrt{\sec^2 y - 1} \right)} = \frac{1}{x \left(\mp \sqrt{x^2 - 1} \right)} \qquad \text{(remember that } -\infty < \tan y < \infty \text{ for}$$
$$\{x: \ 0 < x < \pi \} \setminus \{\frac{\pi}{2}\}$$
$$\therefore \frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2 - 1}}$$

Example 3: If $y = \tan^{-1}x$, then find dy/dx.

Sol.:
$$y=\tan^{-1}x \implies x=\tan y$$

 $1 = \sec^2 y \cdot \frac{dy}{dx}$ (using implicit differentiation)
 $\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{\tan^2 y + 1} = \frac{1}{x^2 + 1}$
 $\therefore \frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}$

In general: If *u* is a function of *x*:

1.
$$\frac{d}{dx} \sin^{-1} u = \frac{du/dx}{\sqrt{1-u^2}} |u| < 1$$

2. $\frac{d}{dx} \cos^{-1} u = \frac{-du/dx}{\sqrt{1-u^2}} |u| < 1$
3. $\frac{d}{dx} \tan^{-1} u = \frac{du/dx}{1+u^2}$
4. $\frac{d}{dx} \cot^{-1} u = \frac{-du/dx}{1+u^2}$
5. $\frac{d}{dx} \sec^{-1} u = \frac{du/dx}{|u|\sqrt{u^2-1}} |u| > 1$
6. $\frac{d}{dx} \csc^{-1} u = \frac{-du/dx}{|u|\sqrt{u^2-1}} |u| > 1$

Examples: Find dy/dx of the following functions:

<u>syllabus</u>

1.
$$y = \sin^{-1} x^{2}$$

Sol.: $\frac{dy}{dx} = \frac{2x}{\sqrt{1 - (x^{2})^{2}}} = \frac{2x}{\sqrt{1 - x^{4}}}$
2. $y = \tan^{-1} \sqrt{x + 1}$
Sol.: $\frac{dy}{dx} = \frac{\frac{1}{2\sqrt{x + 1}}}{1 + (\sqrt{x + 1})^{2}} = \frac{1}{2\sqrt{x + 1}} * \frac{1}{1 + x + 1} = \frac{1}{2\sqrt{x + 1}} * \frac{1}{2 + x}$
3. $y = \sec^{-1} 3x$
Sol.: $\frac{dy}{dx} = \frac{3}{|3x|\sqrt{(3x)^{2} - 1}} = \frac{1}{|x|\sqrt{9x^{2} - 1}}$

4.
$$y = x \sin^{-1} 3x$$

Sol.:
$$\frac{dy}{dx} = x * \frac{3}{\sqrt{1 - (3x)^2}} + \sin^{-1} 3x * 1 = \frac{3x}{\sqrt{1 - 9x^2}} + \sin^{-1} 3x$$

5.
$$y^2 \sin x + y = \arctan y$$

Sol.:
$$2y.y \sin x + y^2 \cos x + y = \frac{y}{1+y^2}$$

 $y'(2y \sin x + 1 - \frac{1}{1+y^2}) = -y^2 \cos x$
 $y'(\frac{2y \sin x(1+y^2) + (1+y^2) - 1}{1+y^2}) = -y^2 \cos x$
 $y'(\frac{2y \sin x + 2y^3 \sin x + 1 + y^2 - 1}{1+y^2}) = -y^2 \cos x$
 $y' = \frac{-y^2 \cos x(1+y^2)}{1+y^2} = \frac{-y \cos x(1+y^2)}{2 \sin x + 2y^2 \sin x + y}$